3.2.21 \(\int \frac {1}{\sqrt {-7+2 x+5 x^2} (8+12 x+5 x^2)} \, dx\) [121]

3.2.21.1 Optimal result
3.2.21.2 Mathematica [A] (verified)
3.2.21.3 Rubi [A] (verified)
3.2.21.4 Maple [B] (verified)
3.2.21.5 Fricas [B] (verification not implemented)
3.2.21.6 Sympy [F]
3.2.21.7 Maxima [F]
3.2.21.8 Giac [B] (verification not implemented)
3.2.21.9 Mupad [F(-1)]

3.2.21.1 Optimal result

Integrand size = 27, antiderivative size = 51 \[ \int \frac {1}{\sqrt {-7+2 x+5 x^2} \left (8+12 x+5 x^2\right )} \, dx=\frac {1}{10} \arctan \left (\frac {5 (2+x)}{2 \sqrt {-7+2 x+5 x^2}}\right )+\frac {1}{5} \text {arctanh}\left (\frac {5 (1+x)}{\sqrt {-7+2 x+5 x^2}}\right ) \]

output
1/10*arctan(5/2*(2+x)/(5*x^2+2*x-7)^(1/2))+1/5*arctanh(5*(1+x)/(5*x^2+2*x- 
7)^(1/2))
 
3.2.21.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.04 \[ \int \frac {1}{\sqrt {-7+2 x+5 x^2} \left (8+12 x+5 x^2\right )} \, dx=\frac {1}{10} \arctan \left (\frac {5+\frac {5 x}{2}}{\sqrt {-7+2 x+5 x^2}}\right )+\frac {1}{5} \text {arctanh}\left (\frac {5+5 x}{\sqrt {-7+2 x+5 x^2}}\right ) \]

input
Integrate[1/(Sqrt[-7 + 2*x + 5*x^2]*(8 + 12*x + 5*x^2)),x]
 
output
ArcTan[(5 + (5*x)/2)/Sqrt[-7 + 2*x + 5*x^2]]/10 + ArcTanh[(5 + 5*x)/Sqrt[- 
7 + 2*x + 5*x^2]]/5
 
3.2.21.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1317, 27, 1362, 216, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {5 x^2+2 x-7} \left (5 x^2+12 x+8\right )} \, dx\)

\(\Big \downarrow \) 1317

\(\displaystyle \frac {1}{50} \int -\frac {50 (x+1)}{\sqrt {5 x^2+2 x-7} \left (5 x^2+12 x+8\right )}dx-\frac {1}{50} \int -\frac {50 (x+2)}{\sqrt {5 x^2+2 x-7} \left (5 x^2+12 x+8\right )}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {x+2}{\sqrt {5 x^2+2 x-7} \left (5 x^2+12 x+8\right )}dx-\int \frac {x+1}{\sqrt {5 x^2+2 x-7} \left (5 x^2+12 x+8\right )}dx\)

\(\Big \downarrow \) 1362

\(\displaystyle -32 \int \frac {1}{\frac {6400 (x+1)^2}{5 x^2+2 x-7}-256}d\frac {8 (x+1)}{\sqrt {5 x^2+2 x-7}}-8 \int \frac {1}{\frac {400 (x+2)^2}{5 x^2+2 x-7}+64}d\left (-\frac {2 (x+2)}{\sqrt {5 x^2+2 x-7}}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{10} \arctan \left (\frac {5 (x+2)}{2 \sqrt {5 x^2+2 x-7}}\right )-32 \int \frac {1}{\frac {6400 (x+1)^2}{5 x^2+2 x-7}-256}d\frac {8 (x+1)}{\sqrt {5 x^2+2 x-7}}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {1}{10} \arctan \left (\frac {5 (x+2)}{2 \sqrt {5 x^2+2 x-7}}\right )+\frac {1}{5} \text {arctanh}\left (\frac {5 (x+1)}{\sqrt {5 x^2+2 x-7}}\right )\)

input
Int[1/(Sqrt[-7 + 2*x + 5*x^2]*(8 + 12*x + 5*x^2)),x]
 
output
ArcTan[(5*(2 + x))/(2*Sqrt[-7 + 2*x + 5*x^2])]/10 + ArcTanh[(5*(1 + x))/Sq 
rt[-7 + 2*x + 5*x^2]]/5
 

3.2.21.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 1317
Int[1/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)* 
(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f) 
, 2]}, Simp[1/(2*q)   Int[(c*d - a*f + q + (c*e - b*f)*x)/((a + b*x + c*x^2 
)*Sqrt[d + e*x + f*x^2]), x], x] - Simp[1/(2*q)   Int[(c*d - a*f - q + (c*e 
 - b*f)*x)/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, 
b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && NeQ[c*e 
 - b*f, 0] && NegQ[b^2 - 4*a*c]
 

rule 1362
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + 
(e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[-2*g*(g*b - 2*a*h)   Subst[I 
nt[1/Simp[g*(g*b - 2*a*h)*(b^2 - 4*a*c) - (b*d - a*e)*x^2, x], x], x, Simp[ 
g*b - 2*a*h - (b*h - 2*g*c)*x, x]/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b 
, c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && Ne 
Q[b*d - a*e, 0] && EqQ[h^2*(b*d - a*e) - 2*g*h*(c*d - a*f) + g^2*(c*e - b*f 
), 0]
 
3.2.21.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(143\) vs. \(2(41)=82\).

Time = 0.77 (sec) , antiderivative size = 144, normalized size of antiderivative = 2.82

method result size
default \(-\frac {\sqrt {-\frac {4 \left (2+x \right )^{2}}{\left (-1-x \right )^{2}}+9}\, \left (2 \,\operatorname {arctanh}\left (\frac {\sqrt {-\frac {4 \left (2+x \right )^{2}}{\left (-1-x \right )^{2}}+9}}{5}\right )+\arctan \left (\frac {5 \sqrt {-\frac {4 \left (2+x \right )^{2}}{\left (-1-x \right )^{2}}+9}\, \left (2+x \right )}{2 \left (\frac {4 \left (2+x \right )^{2}}{\left (-1-x \right )^{2}}-9\right ) \left (-1-x \right )}\right )\right )}{10 \sqrt {-\frac {\frac {4 \left (2+x \right )^{2}}{\left (-1-x \right )^{2}}-9}{\left (1+\frac {2+x}{-1-x}\right )^{2}}}\, \left (1+\frac {2+x}{-1-x}\right )}\) \(144\)
trager \(\operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right ) \ln \left (-\frac {-129600 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )^{2} x +8750 \sqrt {5 x^{2}+2 x -7}\, \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )+18630 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right ) x -155 \sqrt {5 x^{2}+2 x -7}-30330 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )+1105 x +5729}{20 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right ) x -5 x -4}\right )+\frac {\ln \left (\frac {129600 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )^{2} x +8750 \sqrt {5 x^{2}+2 x -7}\, \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )-33210 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right ) x -1595 \sqrt {5 x^{2}+2 x -7}-30330 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )+353 x +337}{20 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right ) x +x +4}\right )}{5}-\ln \left (\frac {129600 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )^{2} x +8750 \sqrt {5 x^{2}+2 x -7}\, \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )-33210 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right ) x -1595 \sqrt {5 x^{2}+2 x -7}-30330 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )+353 x +337}{20 \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right ) x +x +4}\right ) \operatorname {RootOf}\left (80 \textit {\_Z}^{2}-16 \textit {\_Z} +1\right )\) \(356\)

input
int(1/(5*x^2+12*x+8)/(5*x^2+2*x-7)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/10*(-4*(2+x)^2/(-1-x)^2+9)^(1/2)*(2*arctanh(1/5*(-4*(2+x)^2/(-1-x)^2+9) 
^(1/2))+arctan(5/2*(-4*(2+x)^2/(-1-x)^2+9)^(1/2)/(4*(2+x)^2/(-1-x)^2-9)*(2 
+x)/(-1-x)))/(-(4*(2+x)^2/(-1-x)^2-9)/(1+(2+x)/(-1-x))^2)^(1/2)/(1+(2+x)/( 
-1-x))
 
3.2.21.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 154 vs. \(2 (41) = 82\).

Time = 0.27 (sec) , antiderivative size = 154, normalized size of antiderivative = 3.02 \[ \int \frac {1}{\sqrt {-7+2 x+5 x^2} \left (8+12 x+5 x^2\right )} \, dx=\frac {1}{20} \, \arctan \left (\frac {27 \, x^{2} + 20 \, \sqrt {5 \, x^{2} + 2 \, x - 7} {\left (x + 2\right )} + 36 \, x}{31 \, x^{2} + 16 \, x - 56}\right ) + \frac {1}{20} \, \arctan \left (-\frac {27 \, x^{2} - 20 \, \sqrt {5 \, x^{2} + 2 \, x - 7} {\left (x + 2\right )} + 36 \, x}{31 \, x^{2} + 16 \, x - 56}\right ) + \frac {1}{20} \, \log \left (\frac {15 \, x^{2} + 5 \, \sqrt {5 \, x^{2} + 2 \, x - 7} {\left (x + 1\right )} + 26 \, x + 9}{x^{2}}\right ) - \frac {1}{20} \, \log \left (\frac {15 \, x^{2} - 5 \, \sqrt {5 \, x^{2} + 2 \, x - 7} {\left (x + 1\right )} + 26 \, x + 9}{x^{2}}\right ) \]

input
integrate(1/(5*x^2+12*x+8)/(5*x^2+2*x-7)^(1/2),x, algorithm="fricas")
 
output
1/20*arctan((27*x^2 + 20*sqrt(5*x^2 + 2*x - 7)*(x + 2) + 36*x)/(31*x^2 + 1 
6*x - 56)) + 1/20*arctan(-(27*x^2 - 20*sqrt(5*x^2 + 2*x - 7)*(x + 2) + 36* 
x)/(31*x^2 + 16*x - 56)) + 1/20*log((15*x^2 + 5*sqrt(5*x^2 + 2*x - 7)*(x + 
 1) + 26*x + 9)/x^2) - 1/20*log((15*x^2 - 5*sqrt(5*x^2 + 2*x - 7)*(x + 1) 
+ 26*x + 9)/x^2)
 
3.2.21.6 Sympy [F]

\[ \int \frac {1}{\sqrt {-7+2 x+5 x^2} \left (8+12 x+5 x^2\right )} \, dx=\int \frac {1}{\sqrt {\left (x - 1\right ) \left (5 x + 7\right )} \left (5 x^{2} + 12 x + 8\right )}\, dx \]

input
integrate(1/(5*x**2+12*x+8)/(5*x**2+2*x-7)**(1/2),x)
 
output
Integral(1/(sqrt((x - 1)*(5*x + 7))*(5*x**2 + 12*x + 8)), x)
 
3.2.21.7 Maxima [F]

\[ \int \frac {1}{\sqrt {-7+2 x+5 x^2} \left (8+12 x+5 x^2\right )} \, dx=\int { \frac {1}{{\left (5 \, x^{2} + 12 \, x + 8\right )} \sqrt {5 \, x^{2} + 2 \, x - 7}} \,d x } \]

input
integrate(1/(5*x^2+12*x+8)/(5*x^2+2*x-7)^(1/2),x, algorithm="maxima")
 
output
integrate(1/((5*x^2 + 12*x + 8)*sqrt(5*x^2 + 2*x - 7)), x)
 
3.2.21.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 205 vs. \(2 (41) = 82\).

Time = 0.29 (sec) , antiderivative size = 205, normalized size of antiderivative = 4.02 \[ \int \frac {1}{\sqrt {-7+2 x+5 x^2} \left (8+12 x+5 x^2\right )} \, dx=-\frac {1}{10} \, \arctan \left (-\frac {5 \, \sqrt {5} x + 6 \, \sqrt {5} - 5 \, \sqrt {5 \, x^{2} + 2 \, x - 7} + 5}{2 \, {\left (\sqrt {5} + 5\right )}}\right ) - \frac {1}{10} \, \arctan \left (\frac {5 \, \sqrt {5} x + 6 \, \sqrt {5} - 5 \, \sqrt {5 \, x^{2} + 2 \, x - 7} - 5}{2 \, {\left (\sqrt {5} - 5\right )}}\right ) + \frac {1}{10} \, \log \left (5 \, {\left (\sqrt {5} x - \sqrt {5 \, x^{2} + 2 \, x - 7}\right )}^{2} + 2 \, {\left (\sqrt {5} x - \sqrt {5 \, x^{2} + 2 \, x - 7}\right )} {\left (6 \, \sqrt {5} + 5\right )} + 20 \, \sqrt {5} + 65\right ) - \frac {1}{10} \, \log \left (5 \, {\left (\sqrt {5} x - \sqrt {5 \, x^{2} + 2 \, x - 7}\right )}^{2} + 2 \, {\left (\sqrt {5} x - \sqrt {5 \, x^{2} + 2 \, x - 7}\right )} {\left (6 \, \sqrt {5} - 5\right )} - 20 \, \sqrt {5} + 65\right ) \]

input
integrate(1/(5*x^2+12*x+8)/(5*x^2+2*x-7)^(1/2),x, algorithm="giac")
 
output
-1/10*arctan(-1/2*(5*sqrt(5)*x + 6*sqrt(5) - 5*sqrt(5*x^2 + 2*x - 7) + 5)/ 
(sqrt(5) + 5)) - 1/10*arctan(1/2*(5*sqrt(5)*x + 6*sqrt(5) - 5*sqrt(5*x^2 + 
 2*x - 7) - 5)/(sqrt(5) - 5)) + 1/10*log(5*(sqrt(5)*x - sqrt(5*x^2 + 2*x - 
 7))^2 + 2*(sqrt(5)*x - sqrt(5*x^2 + 2*x - 7))*(6*sqrt(5) + 5) + 20*sqrt(5 
) + 65) - 1/10*log(5*(sqrt(5)*x - sqrt(5*x^2 + 2*x - 7))^2 + 2*(sqrt(5)*x 
- sqrt(5*x^2 + 2*x - 7))*(6*sqrt(5) - 5) - 20*sqrt(5) + 65)
 
3.2.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {-7+2 x+5 x^2} \left (8+12 x+5 x^2\right )} \, dx=\int \frac {1}{\sqrt {5\,x^2+2\,x-7}\,\left (5\,x^2+12\,x+8\right )} \,d x \]

input
int(1/((2*x + 5*x^2 - 7)^(1/2)*(12*x + 5*x^2 + 8)),x)
 
output
int(1/((2*x + 5*x^2 - 7)^(1/2)*(12*x + 5*x^2 + 8)), x)